Data Science i uczenie maszynowe

Oceń ten wpis:
(0.0)

Data Science i uczenie maszynowe / Szeliga Marcin. Warszawa: PWN, 2017. Dostępna w IBUK Libra!

Książka przedstawia uczenie maszynowe w ujęciu praktycznym. Przeprowadzając opisane w niej eksperymenty data science poznamy zastosowanie reguł statystycznych i algorytmów uczenia maszynowego do rozwiązywania konkretnych problemów. Takie podejście oznacza, że studenci informatyki oraz specjaliści — analitycy, informatycy i bazodanowcy — zdobędą nie tylko teoretyczną wiedzę, ale również umiejętność jej praktycznego wykorzystania w codziennej pracy.

Książka podzielona jest na cztery części:

• Pierwszy rozdział wyjaśnia termin Data science i pokazuje zastosowanie tej metody w eksperymentach naukowych.

• Rozdziały od drugiego do czwartego poświęcone są danym: technikom oceny ich jakości, wstępnego przygotowania oraz wzbogacenia danych na potrzeby ich dalszej analizy.

• Rozdziały od piątego do dziewiątego opisują poszczególne typy modeli predykcyjnych: klasyfikatory, regresory, modele grupujące, rekomendujące i prognozujące.

• Ostatnie dwa rozdziały książki przedstawiają metody oceny i poprawy jakości modeli oraz udostępniania ich użytkownikom jako usług WWW.

Bezpośredni link do ibuka w bazie: https://libra.ibuk.pl/reader/data-science-i-uczenie-maszynowe-marcin-szeliga-177200

Zapisz się do newslettera

Dołącz do rodziny WSB-NLU i bądź na bieżąco!
Zapisz mnie
Zamknij okno